MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer
نویسندگان
چکیده
The infection with high-risk human papillomavirus is linked to cervical cancer, nevertheless, the role of miRNAs regulated by HPV oncogenes in cancer progression remain largely unknown. Here, we knocked down endogenous E6/E7 in HPV16-positive CaSki cell lines, screened differences in miRNA expression profile with control using miRNA array. 38 miRNAs were down-regulated and 6 miRNAs were up-regulated in the E6/E7 silenced CaSki cells (>2-fold changes with P <0.05). The levels of miR-27b, miR-20a, miR-24, miR-93, and miR-106b were verified by qPCR in E6/E7 silenced CaSki and SiHa cells. MiR-27b, up-regulated by E7, promoted CaSki and SiHa cell proliferation and invasion, inhibit paclitaxel-induced apoptosis. Dual-luciferase experiment confirmed miR-27b down-regulated its target gene PLK2 through the "seed regions". The tumor suppressor PLK2 inhibited SiHa cell proliferation, reduced cell viability, and promoted paclitaxel/cisplatin -induced apoptosis. Furthermore, DGCR8 was found to mediate the up-regulation of miR-27b by HPV16 E7. Our study demonstrated that HPV16 E7 could increase DGCR8 to promote the generation of miR-27b, which accelerated cell proliferation and inhibited paclitaxel-induced cell apoptosis through down-regulating PLK2. These findings provide an insight into the interaction network of viral oncogene, miR-27b and PLK2, and support the potential strategies using antisense nucleic acid of miR-27b for therapy of cervical cancer in the future.
منابع مشابه
Elevation of miR-27b by HPV16 E7 inhibits PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells.
MicroRNAs (miRNAs) have been reported to be involved in multiple biological pathways that can influence tumor progression and metastasis. High-risk human papillomavirus (HR-HPVs) is aetiologically correlated to cervical cancer. Recently, miRNAs were reported to be regulated by virus and play pivotal roles in HPV-related tumor progression. However, the underlying mechanism remains poorly underst...
متن کاملAntisense targeting human papillomavirus type 16 E6 and E7 genes contributes to apoptosis and senescence in SiHa cervical carcinoma cells.
OBJECTIVE Human papillomavirus type 16 (HPV-16) is a high-risk DNA tumor virus involved in the development of cervical carcinomas. Substantial studies have demonstrated that E6 and E7 oncoproteins of HPV-16 could induce cell proliferation and immortalization. Repression of E6 and/or E7 oncogenes may induce cervical cancer cells to undergo apoptosis or senescence. The purpose of this study was t...
متن کاملDeveloping Michigan Cancer Foundation 7 Cells with Stable Expression of E7 Gene of Human Papillomavirus Type 16
Background: Human papillomavirus (HPV) is responsible for the development of cervical neoplasia. Infection with human papillomavirus type 16 (HPV-16) is a major risk factor for the development of cervical cancer. The virus encodes three oncoproteins (E5, E6 and E7), of which, the E7 oncoprotein is the major protein involved in cell immortalization and transformation o...
متن کاملInterferon-β Induced microRNA-129-5p Down-Regulates HPV-18 E6 and E7 Viral Gene Expression by Targeting SP1 in Cervical Cancer Cells
Infection by human papillomavirus (HPV) can cause cervical intraepithelial neoplasia (CIN) and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the e...
متن کاملMicroRNA-331-3p Suppresses Cervical Cancer Cell Proliferation and E6/E7 Expression by Targeting NRP2
Aberrant expression of microRNAs (miRNAs) is involved in the development and progression of various types of cancers. In this study, we investigated the role of miR-331-3p in cell proliferation and the expression of keratinocyte differentiation markers of uterine cervical cancer cells. Moreover, we evaluated whether neuropilin 2 (NRP2) are putative target molecules that regulate the human papil...
متن کامل